Soil Mechanics

1st Semester

Theoretic: 2 Hour/week

Practical: 2 Hour/week

: 1 Hour/week

Item	Subject	Hours
	Basic characteristics of soils	
	-Soil Formation	
	-Clay Minerals	_
1	-Soil fabric	3
	-Specific Gravity	
	Weight-Volume Relationships	
	- Weight-Volume Relationships	
	- Relationships among Unit Weight, Void Ratio, Moisture	
	Content, and Specific Gravity	
2	-Relationships among Unit Weight, Porosity, and Moisture	
	Content	
	-Various Unit-Weight Relationships	6
	-Relative Density	
	Plasticity of Fine-Grained soils	
	-Introduction	
	-Liquid Limit (<i>LL</i>)	
3	-Plastic Limit (<i>PL</i>)	3
	-Shrinkage Limit (<i>SL</i>)	
	-Plasticity Chart	
	Classification of Soil	
4	-Mechanical Analysis of Soils	6
	-Partical-size distribution curve	U
	-Unified Soil Classification System	

	Soil Compaction	
	- Compaction-General Principles	
	- Standard Proctor Test	
5	-Factors Affecting Compaction	6
	- Modified Proctor Test	
	-Field Compaction	
	-Specifications for Field Compaction	
	-Determination of Field Unit Weight of Compaction	
	Permeability	
	-Bernoulli's Equation	
	-Darcy's Law	
	- Hydraulic Conductivity	
6	- Laboratory Determination of Hydraulic Conductivity	6
	- Equivalent Hydraulic Conductivity in Stratified Soil	
	- Permeability Test in the Field by Pumping from Wells	
	-In Situ Hydraulic Conductivity of Compacted Clay Soils	
	Seepage	
	- Laplace's Equation of Continuity	
	- Flow Nets	
	- Seepage Calculation from a Flow Net	
7	- Flow Nets in Anisotropic Soils	9
	-Uplift Pressure Under Hydraulic Structures	
	-Seepage Through an Earth Dam on an Impervious Base	
	-Earth Dams With Drainage Blanket	
	-Control of Piping	
	- Filter Design	
	In Situ Stresses	
	-Stresses in Saturated Soil without Seepage	
	-Stresses in Saturated Soil with Upward Seepage	
	-Stresses in Saturated Soil with Downward Seepage	
8	-Seepage Force	6
	-Heaving in Soil Due to Flow Around Sheet Piles	
	-Use of Filters to Increase the Factor of Safety Against Heave	
	-Capillary Rise in Soils	
	-Effective Stress in the Zone of Capillary Rise	

Soil Mechanics

2nd Semester

Theoretic: 2 Hour/week

Practical: 2 Hour/week

: 1 Hour/week

Item	Subject	Hours
	Stresses in a Soil Mass	
9	-Normal and Shear Stresses on a Plane	3
	-The Pole Method of Finding Stresses Along a Plane	3
	Compressibility of Soil	
	-Contact Pressure and Settlement Profile	
	-Relations for Elastic Settlement Calculation	
10	-Fundamentals of Consolidation	
	-One-Dimensional Laboratory Consolidation Test	
	- Void Ratio—Pressure Plots	10
	-Normally Consolidated and Overconsolidated Clays	18
	-Calculation of Settlement from One-Dimensional	
	Primary Consolidation	
	- Secondary Consolidation Settlement	
	- Time Rate of Consolidation	
	- Coefficient of Consolidation	
	- Methods for Accelerating Consolidation Settlement	
11	Shear Strength of Soil	
	- Mohr–Coulomb Failure Criterion	
	-Inclination of the Plane of Failure Caused by Shear	
	-Laboratory Tests for Determination of Shear Strength	18
	Parameters	
	- Direct Shear Test	
	- General Comments on Direct Shear Test	
	-Triaxial Shear Test-General	

	-Consolidated-Drained Triaxial Test	
	-Consolidated-Undrained Triaxial Test	
	- Unconsolidated-Undrained Triaxial Test	
	-Unconfined Compression Test on Saturated Clay	
	- Vane Shear Test	
	Lateral Earth Pressure: At-Rest, Rankine, and Coulomb	
	-At-Rest, Active, and Passive Pressures -Earth Pressure At-Rest	
12	-Rankine's Theory of Active Pressure	6
	-Theory of Rankine's Passive Pressure	
	-Coulomb's Active Pressure	
	-Coulomb's Passive Pressure	